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Abstract
We obtained the scanning tunneling spectrum (STS) of an electron confined in a rectangular
quantum corral by considering the electron to be in a quasi-stationary state. Because of
non-hermiticity of the Hamiltonian, the electron has a complex eigenenergy. The imaginary part
gives the peak width coming mainly from the electron tunneling through a corral barrier. Our
STS is consistent with the experimental spectrum that had been measured for electrons confined
in a rectangular quantum corral. We obtained peak widths against energy levels and
components of the STS which are constructed with quasi-stationary eigenstates. It is shown that
normalization of a wavefunction by considering its time evolution is decisive in obtaining the
proper STS. Moreover, we specified the position dependence of STS in relation to the image of
the surface local density of states.

1. Introduction

On noble metal surfaces such as Cu, Ag and Au, there exists
a Shockley electron that has a parabolic band located in the
bulk bandgap [1]. The Shockley electron freely moves in
a parallel direction to the surface but it is localized in the
normal direction to the surface. By making use of scanning
tunneling microscopy (STM), Eigler’s group [2–7] developed
a new field of study that enables us to fabricate an artificial
system in a nanoscale. They clearly showed the wave feature
of Shockley electrons confined in a circular quantum corral
(QC) built up with 48 iron atoms on a Cu(111) surface.
Since then many researchers have been promoting studies
on several kinds of QCs or quantum islands fabricated on
noble metal and transition metal surfaces [8–12]. In those
experiments STM images have been observed in topographical
or differential conductance modes. Moreover, a scanning
tunneling spectrum (STS) has been measured [4–6, 8–10] to
clarify the characteristic energy levels and energy widths of
electrons confined in QCs. The inverse of energy width gives
the lifetime of an electron staying within a QC. Hence, by use
of an STM apparatus, we can obtain information on confined
electrons in both real space and energy space.

As regards theoretical analyses there are several ap-
proaches. One is based on a scattering theory in which electron
waves scattered from corral atoms construct a density profile
inside a QC [5, 6, 9, 12, 13]. Each scattered wave has a

1 Author to whom any correspondence should be addressed.

circular symmetry around the corral atom. By superimposing
such scattered waves they derived the local density of states
(LDOS) from a Green’s function. Another is based on a
viewpoint that confined electrons are in stationary states in
a QC [8, 10, 14, 15]. In reality, such electrons leak out
of the well by tunneling through the corral barrier, which
makes the lifetime of the electron and peak widths of STS
finite. However, we cannot pick out each peak width when
experimental peaks are not separated. Several researchers
introduced energy widths from experimental peak profiles
of STS. Kliewer et al [9] used experimental energy widths
measured for a circular QC formed on an Ag(111) surface.
From another viewpoint that a confined electron is in a quasi-
stationary state, we naturally derive the lifetime of the electron
and the LDOS which can be measured by STS, and analyze the
experimental STS.

2. Quasi-stationary states

2.1. One-dimensional quasi-stationary state

At first we consider a quasi-stationary state for a one-
dimensional QC. Figure 1 shows a schematic image of the
potential energy where EF means the Fermi level.

The Schrödinger equation for the present system can be
written as

ih̄
∂

∂ t
�(x, t) =

[
− h̄2

2m∗
∂2

∂x2
+ V (x)

]
�(x, t) = E �(x, t).

(1)
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Figure 1. One-dimensional potential energy whose barrier width is
finite.

By pulling out a time-dependent term from a wavefunction,
�(x, t) = ψ(x) exp(−iEt/h̄), ψ(x) satisfies the following
Schrödinger equation:

Hψ(x) =
[
− h̄2

2m∗
∂2

∂x2
+ V (x)

]
ψ(x) = Eψ(x). (2)

Here we consider the case in which an electron is initially
supplied in region III. Such an electron occupies an energy
level higher than EF and fades away from the QC. Hence,
we assign wavefunctions in regions from I to V as follows;
ψI(x) = A exp(−ikx), ψII(x) = B exp(qx) + C exp(−qx),
ψIII(x) = Dsinkx + Fcoskx , ψIV(x) = G exp(qx) +
H exp(−qx) and ψV(x) = J exp(ikx). In regions I and V, we
consider electron waves outgoing from the QC because there is
no wave incoming into the QC. A whole wavefunction can be
classified into a symmetric or an antisymmetric wavefunction
because our potential energy is symmetric with respect to a
V (x) axis.

To derive eigenvalues of k, we impose boundary
conditions that the wavefunction and its first derivative are
continuous at four boundaries; x = ±a/2 and ±b/2. We
obtained the following two kinds of eigenvalue equation:

q cos
1

2
ka − k sin

1

2
ka = e−q(b−a) q + ik

q − ik

× (q cos 1
2 ka + k sin 1

2 ka). (3)

for the symmetric wavefunction and

k cos
1

2
ka + q sin

1

2
ka = −e−q(b−a) q + ik

q − ik

× (k cos 1
2 ka − q sin 1

2 ka), (4)

for the antisymmetric wavefunction. Equations (3) and (4) are
invariant under simultaneous transformations k → −k and
q → −q . In the limit b → ∞, we reproduce eigenvalue
equations for stationary states whose k and q are real numbers.
Because of an imaginary unit ‘i’ included in equations (3)
and (4), eigenvalues become complex numbers. By making
both k and q be k = k(r) + ik(i) and q = q(r) + iq(i), we
numerically solved equations (3) and (4) with another relation
k2 + q2 = (2m∗/h̄2)(V0 − V1). The eigenenergy defined by
En = [h̄2/(2m∗)]k2

n − V0 can be written as a complex number
En = E (r)

n − 1
2 i�n , where E (r)

n = [h̄2/(2m∗)][k(r)2n −k(i)
2

n ]− V0

and �n = (2h̄2/m∗)k(r)n |k(i)n |.
Figure 2 shows the distribution of complex wavenumbers

expressed as non-dimensional values ξn = kna = ξ (r)n + iξ (i)n ,

Figure 2. Distribution of complex wavenumbers ξn = kna:
n = 1–10.

where we chose a = 90 Å − d , b = 90 Å + d and d =
1
2 (b − a) = 2.74 Å; a diameter of an Mn atom [16, 17].
Crosses represent poles of wavenumbers on a complex plane.
The imaginary part k(i)n is negative.

Considering these situations, we propose a new normaliza-
tion method of �(x, t) taking account of the time dependence
of a quasi-stationary state. Here we define �n(x, t) which
satisfies a relation �n(x, t) = exp(−iEFt/h̄)�n(x, t). When
the bias voltage of the STM tip is positive with respect to EF, an
electron supplied in the QC occupies a quasi-stationary energy
level higher than EF. �n(x, t) represents the state having the
energy E − EF. The �n(x, t) moving from the well to the far
right can be written as

�Vn(x, t) = A exp{i[k(r)n x − (E (r)
n − EF)t/h̄]}

× exp[|k(i)n |(x − υ(r)n t)]. (5)

A term exp[|k(i)n |(x − υ(r)n t)] plays the role of an envelope
specified by k(i)n and �n . In the limit x → + ∞, �Vn(x, t)
diverges. Because �Vn(x, t) has a wavefront at x = υ(r)n t ,
we normalize |�Vn(x, t)|2 and |�Vn(x, t)|2 in the region from
1
2 b to υ(r)n t . This comes from a situation that the outgoing wave
cannot pull ahead of the wavefront. At a finite time t , we define
the probability in each region as

WNn(t) =
∫

N
|�n(x, t)|2 dx . (6)

A label N represents a region over which we carry out
integration. The probability of an electron which exists in
region V can be obtained as

WVn(t) =
∫ υ(r)t

b/2
|Jn|2exp[2|k(i)n |(x − υ(r)n t)] dx

= |Jn|2
2|k(i)n |

{
1 − exp

[
− 2|k(i)n |

(
υ(r)n t − 1

2
b

)]}
. (7)

Actually it takes a long time to gain data for the STM current
so that a condition t � b/(2υ(r)n ) is fulfilled. Hence, we can
apply a limiting case t → ∞ to the present system, which
makes WIIn(t), WIIIn(t) and WIVn(t) be negligible and makes
WIn(t) and WVn(t) be independent of time. We normalize
the whole wavefunction, therefore, so that both WIn(+∞) and

WVn(+∞) are 1
2 , which yields |An| =

√
|k(i)n | and |Jn| =√

|k(i)n | because an electron runs away toward the far left or
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Figure 3. Schematic 3D illustration of our rectangular QC.

the far right with the same probability 1
2 . If t ≈ b/(2υ(r)n )

shortly after wavefronts appear from barrier walls, coefficients
An and Jn depend on time. It is inadequate to apply our
normalization procedure to this span of time because the
wavefunction�(x, t) does not satisfy equation (1). Our choice

that |An| =
√

|k(i)n | and |Jn| =
√

|k(i)n | yields LDOS images
consistent with calculated ones [9].

It should be emphasized that the Hamiltonian H is not a
Hermitian operator for an eigenfunction ψn(x) though ∂2/∂x2

is a real operator and H does not have an imaginary part. This
non-hermiticity comes from electron waves outgoing from the
QC in regions I and V because we treat the case that an electron
is supplied in region III. By using Dirac’s notation, we obtain
a non-zero surface integral; 〈H�n|�n〉 − 〈�n|H�n〉 	= 0.
Especially in the limit t → ∞, we obtain

limt→∞[〈H�n|�n〉 − 〈�n|H�n〉]
= − h̄2

2m∗ limt→∞
[
�n(x, t)

∂

∂x
�∗

n (x, t)

− �∗
n (x, t)

∂

∂x
�n(x, t)

]∣∣∣∣
x=υ(r)n t

x=−υ(r)n t

= i�n, (8)

where υ(r)n = h̄k(r)n /m∗. Eigenenergies, therefore, become
complex numbers. When �n = 0 which corresponds to the
case of a stationary state, the Hamiltonian is Hermitian.

2.2. Two-dimensional quasi-stationary state

Here we consider an electron confined in a rectangular QC. We
use a potential energy defined as

V (ρ) = −V0 + (V0 − V1)[θ(|x | − 1
2 ax)θ(

1
2 bx − |x |)

+ θ(|y| − 1
2 ay) θ(

1
2 by − |y|)], (9)

where ρ is a position vector (x, y), the origin (0, 0) is set at the
center of the well and θ(x) represents Heaviside’s function;
θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0. Figure 3 shows a
schematic 3D image of this potential energy. The well has the
inner width ax in the x direction and ay in the y direction. The
rectangular potential energy has four barriers with the width
(bx − ax)/2 in the x direction and the width (by − ay)/2 in
the y direction. To apply our model to the experimental system
built up by Kliewer et al [9], a rectangular QC constructed with
Mn atoms on an Ag(111) surface, we chose the bottom of the
potential to be −V0 = −4.802 eV and the level of four long
bars to be −V1 = −4.350 eV. We set the effective mass of
the confined electron equal to m∗ = 0.42 me [9]. Four pillars

Table 1. Values of εnm (meV).

m

n 1 2 3 4 5

1 −46.6 −25.1 12.2 66.3 137.8
2 −20.5 1.0 38.3 92.4 163.9
3 25.1 46.6 83.9 138.0 209.5
4 91.6 113.1 150.4 204.5 276.0
5 179.5 201.0 238.0 292.4 363.9

shown in figure 3 have negligible effect on confined electrons
because wavefunctions have low intensities near four corners.

Because a Shockley-electron band of the Ag(111) surface
intersects with the bulk band at about 400 meV [1], the
Shockley electron having the lower energy stays mainly in
a two-dimensional QC. We consider a situation where a
rectangular QC confines such a Shockley electron. By using
a separation-of-variables method, we assign the wavefunction
confined in the QC as �nm(ρ) = ψn(x) ψm(y) in which
ψn(x) = Dnsinknx + Fncoskn x and ψm(y) = Dmsinkm y +
Fmcoskm y. Eigenvalues kn and km are solutions of two kinds
of equations (3) and (4), and they are complex numbers written
as kn = k(r)n + ik(i)n and km = k(r)m + ik(i)m . The eigenenergy can
be written as Enm = E (r)

nm − i 1
2�

QC
nm , where

E (r)
nm = h̄2

2m∗ [k(r)2nx + k(r)
2

my − k(i)
2

nx − k(i)
2

my ] − V0, (10)

and

�QC
nm = −2h̄2

m∗ [k(r)nx k(i)nx + k(r)myk(i)my]. (11)

The h̄/�QC
nm is the lifetime of an electron associated with

tunneling through four barriers because the probability density
decays exponentially with time as exp(−�QC

nm t/h̄) in the QC.
Hereafter we label a state the (n,m) state. Odd numbers n and
m refer to symmetric wavefunctions and even numbers refer
to antisymmetric wavefunctions. Table 1 shows eigenenergies
εnm = E (r)

nm − EF obtained for a rectangular QC fabricated
by Kliewer et al [9] where the Fermi level is set at EF =
−4.740 eV [18]. We solved eigenvalue equations by using
ax = 90 Å − d , bx = 90 Å + d , ay = 100 Å − d and
by = 100 Å + d in which d = 2.74 Å. Since ax < ay and
bx < by , we have a relation εnm > εmn in the case that n > m.
The εnm does not monotonically increase with n or m.

3. Scanning tunneling spectrum

3.1. LDOS and STS

The differential conductance of the STM current provides the
surface local density of states (LDOS). The STS is proportional
to the LDOS measured at a fixed position where the distance
between the tip and the specimen is kept constant [5, 9]. In
the present treatment, the effect of the DOS of the STM tip is
thought to be negligible because the bias voltage is low and the
bandwidth of a Shockley electron is small, which is in contrast
to the case where we observe STM images of semiconductor

3
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Figure 4. Energy width �QC
nm as a function of (E (r)

nm + V0)/e. A fitting
curve is shown as a straight line.

surfaces with bias voltages greater than 1 eV. Here we define
the LDOS for electrons confined in a rectangular QC as [14]

D(ρ, E) =
∑
σnm

|�nm(ρ)|2 �nm

2π[(E − E (r)
nm)

2 + ( 1
2�nm)

2]
=

∑
σnm

Dnm(ρ, E), (12)

where σ represents spin degrees of freedom. The Dnm(ρ, EF+
eV ) has a Lorentzian shape whose full width at half-maximum
of the (n,m) state is �nm . Considering that a Shockley electron
originally has a lifetime on the clean surface, we set the energy
width of a state (n, m) equal to �nm = �QC

nm + �CS, where �CS

is associated with a Shockley electron on the clean surface.
Figure 4 represents �QC

nm as a function of (E (r)
nm + V0)/e. Closed

circles represent �QC
nm . Scattering of data comes from the

difference in lengths of two sides of a rectangle. By the least-
squares method, a sequence of �QC

nm can be approximated as
[0.24 (Enm +V0)+0.36] meV which is shown as a straight line
in figure 4. This linearity is not universal. With the increase
in barrier thickness, �QC

nm shows a concave curve against bias
voltage. The slope 0.24 is close to the value 0.2 used by Li
et al [8] for a hexagonal Ag island on the Ag(111) surface.

We neglect other contributions attributable to Coulomb
interactions between electrons and the energy resolution of
an STS apparatus. In addition, we neglect electron–phonon
interactions because Kliewer et al [9] measured the STS at
4.6 K.

Figure 5 shows our STS obtained at the center of a QC in
which we adopted the value �CS = 3 meV to reproduce the
highest peak at −47 mV of the (1, 1) state. Peak positions
and peak widths are consistent with the experimental ones [9].
The value of �QC

11 is too small to explain the experimental peak
width, which supports our introduction of �CS. All quantum
numbers inserted in figure 5 are odd, reflecting that symmetric
wavefunctions have finite intensities at the center. In figure 5
we also show LDOS components Dnm(0, EF + eV ) calculated
at the center. The peak height of each state decreases with the
increase in bias voltage because a peak height at E = E (r)

nm
of the Lorentzian part is 2/(π�nm) and �nm increases with
E (r)

nm . Moreover, the probability density |�nm(ρ)|2 at a fixed
position ρ gives an additional weight on each peak. The STS
obtained at the center is composed mainly of (1, 1), (1, 3) and
(3, 1) states since these states have high probability density at
the center. In addition, (3, 3) and (1, 5) states form peaks at
higher bias voltages. Differences in peak heights of (1, 3) and

Figure 5. STS calculated at the center of a rectangle as a function of
bias voltage. A thick curve shows D(0, EF + eV ) and other curves
show components Dnm(0, EF + eV ).

Figure 6. STS calculated at a position (4 Å, 2 Å) as a function of
bias voltage.

(3, 1) states comes from the difference in side lengths of the
rectangle resulting in relations E13 < E31 and �QC

13 < �
QC
31 . In

this manner we can easily specify components of STS because
each wavefunction has a rectangular symmetry. In contrast,
Kliewer et al [9] obtained an overall profile of STS by using a
scattering theory. In their analysis, the overall wavefunction is
constructed by electron waves scattered circularly around each
corral atom. Hence, it is difficult to pick out components of
STS because scattered electrons have a circular symmetry.

Figure 6 shows our STS calculated at an off-centered
position (4 Å, 2 Å). Because the (2, 1) state is antisymmetric
with respect to the y axis and the (1, 2) state is antisymmetric
with respect to the x axis, two peaks at −20.5 and −25.1 mV
appear. Our STS is consistent with the experimental profile in
both peak positions and the whole shape. Similarly to the STS
calculated at the center, broad peaks at about +20 and +85 mV
appear. Though Kliewer et al [9] gave a comment only on two
peaks—the (1, 1) state for the highest peak at about −50 mV,
and the (1, 2) state and (2, 1) state for the second peak at
about −25 mV—our method gives more detailed information
of peaks in all ranges of bias voltage.

In figures 5 and 6 dips between adjacent peaks show a
gradual rise in height with bias voltage. This tendency is due

4
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Figure 7. STS calculated by different normalization methods.
A broken curve shows STS calculated in terms of δ-function
normalization of wavefunctions. A solid curve shows STS shown in
figure 6.

to the relation |A|2 = |k(i)| which yields an increase of |D|
and |F | with eigenenergy. Finite intensities at dips, therefore,
do not come from the background attributable to external
factors such as energy resolution of an STM apparatus. We
can determine coefficients D and F by another normalization
method for wavefunctions so that the integration of probability
densities over two regions outside the QC yields δ(knx −
k ′

nx)δ(kmy−k ′
my). In such a case, the values |A| and |J | become

a constant which is independent of wavenumber k. A broken
curve in figure 7 shows STS obtained by this normalization
method. The profile is mostly structureless especially in the
high energy range and is inconsistent with the experimental one
though peak widths are consistent with experimental ones. A
solid curve shows STS obtained by the normalization method
considering the time evolution of wavefunctions; |Jn|2 =
|An|2 = |k(i)n | described in section 2.1. Because |k(i)n | increases
with |E (r)

n | and so does |k(i)m | with |E (r)
m | and |�nm(ρ)|2 is

proportional to |k(i)n | × |k(i)m |, the STS drawn by a solid curve
is much higher than that drawn by a broken curve in the high
bias-voltage range.

The effect of �CS on electron states has been discussed
on clean noble metal surfaces [19, 20]. Figure 8 shows
�CS dependence of the present STS calculated at the position
ρ = (4 Å, 2 Å). It clearly shows that the peak height of the
highest peak decreases with the increase in �CS and peaks at
higher energy levels become dull. All peaks calculated with
�CS = 20 meV are broad and a peak at about −25 mV is
absorbed into a wide dip. Hence, the value of �CS should be
less than 8 meV.

3.2. LDOS images

To clarify the relation between the STS and the LDOS image,
we obtained the bias-voltage dependence of LDOS images.
Figure 9 shows our LDOS images defined by D(ρ, EF+eV ) at
bias voltages V = εnm/e. Two numerals in a bracket inserted
in each subtitle represent the electron state (n,m). These
images become complex with the increase in bias voltage. As
is shown in equation (12), the image does not depend only
on the state (n,m) but on electron states superposed over the
energy range between EF and EF + eV .

Figure 8. �CS dependence of STS calculated at a position (4 Å, 2 Å).

3.3. Position dependence of STS

Figure 10 shows a position dependence of STS where scanning
is carried out in the x direction from the center. A peak at
−20 mV comes from the (2, 1) state, but the (1, 2) state does
not form a peak because the LDOS image in figure 9(b) has
low intensity near the x axis. A peak height at about +12 mV
of the (1, 3) state decreases with the increase in distance
from the center, and a peak height at about +38 mV of the
(2, 3) state exceeds the peak height at about +12 mV. This
tendency can be attributed to the difference between images
in figures 9(e) and (g); a high intensity region exists near the
center of figure 9(e) while a low intensity region exists near
the center of figure 9(g). In the upper region of figure 10 a
peak composed of (4, 1) and (2, 4) states appear at 90 mV.
This can be explained by images of figures 9(j) and (k) in
which high intensity regions are located near the right-hand
side of a rectangle. A peak composed of (1, 3) and (3, 1) states
disappears with the increase in scanning distance but a peak
composed of (3, 3) and (4, 1) states appears instead. Peaks
constructed with (2, 3) and (3, 2) states which are absent in
figures 5 and 6 appear. With the further increase in scanning
distance, a peak of the (3, 1) state reappears because of a bright
area near the middle of the right-hand side of figure 9(f).

When the scanning is carried out along a diagonal line
y = (10/9)x (figure 11), a peak at 1 mV grows with the
distance from the center. The cause is a bright spot near the
upper right corner of figure 9(d). In addition to this, a peak at
about −20 mV has a broader width than those in figure 10,
which comes from a combination of two peaks at −25 and
−20 mV. As the scanning position goes far from the center,
peaks in figures 10 and 11 turn out to be dull because of large
energy widths at high energy levels.

We should note that LDOS images can be obtained from
the overall position dependence of STSs on condition that z(ρ)
is set to be a constant in which dI/dV corresponds to LDOS.

3.4. Extraction of peak data from experimental STS

Besides an overall profile of STS, it is desirable to extract
peak data from the experimental STS. Each peak width can
be estimated by the second derivative with respect to V of

5
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Figure 9. LDOS images calculated at eigenenergies V = εnm/e (mV). The image at +92.6 mV is omitted because no apparent difference
from that at +91.6 mV appears. (a) −46.6 mV (1, 1), (b) −25.1 mV (1, 2), (c) −20.5 mV (2, 1), (d) +1.0 mV (2, 2), (e) +12.2 mV (1, 3),
(f) +25.1 mV (3, 1), (g) +38.3 mV (2, 3), (h) +46.6 mV (3, 2), (i) +66.3 mV (1, 4), (j) +83.9 mV (3, 3), (k) +91.6 mV (4, 1),
(l) +113.1 mV (4, 2) and (m) +138.0 mV (3, 4).

Figure 10. Position dependence of STS in the x direction. The
increment in position is 2 Å. The uppermost curve shows STS
calculated at a position (42 Å, 0 Å).

STS. Figure 12 shows the second derivative of our STS shown
in figure 6 as a function of bias voltage. We find zero
points of −d2 Dnm(ρ, EF + eV )/dV 2 at a fixed position ρ

as eV± = E (r)
nm − EF ± (

√
3/6)�nm and the peak width

Figure 11. Position dependence of STS in a diagonal direction
y = (10/9)x . The increment in position distance is 2 Å. The
uppermost curve represents STS calculated at a position (42 Å,
46.7 Å).

can be estimated by the difference in adjacent zero points as
�nm = √

3e(V+ − V−). The peak profile is much sharper
than that in figure 6 and each peak corresponds to that in STS.
Although peaks in the STS are not fully separated, peaks in

6
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Figure 12. The second derivative of our STS profile with respect to
bias voltage. A dashed curve represents the intensity of STS.

figure 11 are well separated. In figure 12, we find that a broad
peak at about 25 mV displayed in figure 6 is split into two
peaks and broad peaks at 90 and 140 mV become sharp peaks.
Usually, an experimental intensity distribution is decomposed
into Lorentzian components by choosing weighting constants
and peak widths of them by a least-squares method, for
example. Such a method, however, requires us to determine
the number of peak components. We propose that the second
derivative of the STS yields directly detailed information
of STS components, which does not require uncertainty in
choosing the number of peak components. To carry out the
second derivative of the experimental STS it may actually
require smoothing over the first derivative. Electron states
of seven peaks in figure 12 can be assigned from the left as
follows; (1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (3, 3) and (1, 5) +
(3, 4). Energy widths taken from figure 12 are consistent with
those obtained by �QC

nm + �CS in which �CS = 3 meV. We
find that the first derivative is insufficient to acquire detailed
information of peaks in STS because components are not well
separated.

4. Discussion and conclusions

On the basis of scattering theory, as had been carried out by
Kliewer et al [9], the LDOS is constructed by superposing
circularly scattered waves. It is, therefore, difficult to specify
electron states that have a rectangular symmetry. In that case it
needs to refer to stationary states obtained for a box potential,
for example. In addition to this, it needs to introduce energy
widths as fitting parameters. Contrary to this, our viewpoint

that electrons are in quasi-stationary states having a rectangular
symmetry provides detailed information of eigenenergies and
energy widths of a confined electron.

In conclusion, our results demonstrate that the STS for
the electron confined in a rectangular QC can be explained by
considering the electron to be in a quasi-stationary state. Such
a viewpoint naturally yields peak widths of STS. Moreover,
our treatment on STM images and STS enables us to clarify
components of electron states contributing to STM images
and STS. Hence, our results provide detailed information of
confined electrons in both real space and energy space. As
regards a method to determine eigenenergies and energy widths
of the confined electron from an experimental STS, we propose
that the second derivative of the STS with respect to a bias
voltage provides detailed information of the confined electron.
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